
Configuration Management Primer Version 1.0
Project Note 01
16 December 2021

This stage:
https://docs.oasis-open-projects.org/oslc-op/config-primer/v1.0/pn01/config-primer.html (Authoritative)
https://docs.oasis-open-projects.org/oslc-op/config-primer/v1.0/pn01/config-primer.pdf

Previous stage:
N/A

Latest stage:
https://docs.oasis-open-projects.org/oslc-op/config-primer/v1.0/config-primer.html (Authoritative)
https://docs.oasis-open-projects.org/oslc-op/config-primer/v1.0/config-primer.pdf

Open Project:
OASIS Open Services for Lifecycle Collaboration (OSLC) OP

Project Chairs:
Jim Amsden (jamsden@us.ibm.com), IBM
Andrii Berezovskyi (andriib@kth.se), KTH

Editor:
David Honey (david.honey@ibm.com), IBM

Related work:
This specification is related to:

OSLC Configuration Management Version 1.0. Part 1: Overview. https://open-services.net/spec/config/latest

Abstract:
This primer serves as a guide to the concepts in the specification, and through the use of simple examples, explains how versioning and configurations
are represented, how and when local configurations and global configurations are used, and lists the elements that an implementation should consider.

Status:
This is a Non-Standards Track Work Product. The patent provisions of the OASIS IPR Policy do not apply.

This document was last revised or approved by the Project Governing Board of the OASIS Open Services for Lifecycle Collaboration (OSLC) OP on the
above date. The level of approval is also listed above. Check the “Latest stage” location noted above for possible later revisions of this document. Any
other numbered Versions and other technical work produced by the Open Project are listed at https://open-services.net/about/.

Comments on this work can be provided by opening issues in the project repository or by sending email to the project’s public comment list oslc-
op@lists.oasis-open-projects.org.

Citation format:
When referencing this specification the following citation format should be used:
[OSLC-Config-Primer-1.0]
Configuration Management Primer Version 1.0. Edited by David Honey. 16 December 2021. OASIS Project Note 01. https://docs.oasis-open-
projects.org/oslc-op/config-primer/v1.0/pn01/config-primer.html. Latest stage: https://docs.oasis-open-projects.org/oslc-op/config-primer/v1.0/config-
primer.html.

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 1 of 20

https://www.oasis-open.org/
https://docs.oasis-open-projects.org/oslc-op/config-primer/v1.0/pn01/config-primer.html
https://docs.oasis-open-projects.org/oslc-op/config-primer/v1.0/pn01/config-primer.pdf
https://docs.oasis-open-projects.org/oslc-op/config-primer/v1.0/config-primer.html
https://docs.oasis-open-projects.org/oslc-op/config-primer/v1.0/config-primer.pdf
https://open-services.net/about/
mailto:jamsden@us.ibm.com
https://www.ibm.com/
mailto:andriib@kth.se
https://www.kth.se/en
mailto:david.honey@ibm.com
https://www.ibm.com/
https://open-services.net/spec/config/latest
https://open-services.net/about/
https://open-services.net/about/
mailto:oslc-op@lists.oasis-open-projects.org
https://docs.oasis-open-projects.org/oslc-op/config-primer/v1.0/pn01/config-primer.html
https://docs.oasis-open-projects.org/oslc-op/config-primer/v1.0/config-primer.html

Notices
Copyright © OASIS Open 2021. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy").
The full Policy may be found at the OASIS website.

This specification is published under the Attribution 4.0 International (CC BY 4.0). Portions of this specification are also provided under the Apache
License 2.0.

All contributions made to this project have been made under the OASIS Contributor License Agreement (CLA).

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by
removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an
OASIS Open Project or OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be
followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its
official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark/ for above guidance.

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 2 of 20

https://www.oasis-open.org/policies-guidelines/ipr/
https://creativecommons.org/licenses/by/4.0/legalcode
https://www.apache.org/licenses/LICENSE-2.0
https://www.oasis-open.org/policies-guidelines/open-projects-process/#individual-cla-exhibit
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark/

Table of Contents
1. Outline
2. Motivation

2.1 Problem
2.2 Solution
2.3 Business Value

3. Concepts
4. Representation of version resources
5. Local configurations
6. Global configurations
7. UML Class diagram
8. Component skew and contribution order
9. Branching
10. Implementation elements

10.1 Introduction
10.2 Components

10.2.1 Minimal elements
10.2.2 Optional elements

10.3 Configurations
10.3.1 Minimal elements
10.3.2 Optional elements

11. Concept resources and version resources
11.1 Minimal elements
11.2 Optional elements

12. References
Appendix A. Acknowledgements

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 3 of 20

1. Outline
The OSLC Configuration Management specification is a reference for servers that want to expose configuration management to OSLC clients. However,
the specification is not organized as a tutorial or introduction about how to implement an OSLC configuration management compliant server or adapter.

This primer serves as a guide to the concepts in the specification, and through the use of simple examples, explains how versioning and configurations
are represented, how and when local configurations and global configurations are used, and lists the elements that an implementation should consider.
The specification remains the definitive source, and where this primer differs from the specification, the specification should be taken as the authoritative
reference.

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 4 of 20

2. Motivation
2.1 Problem

Any software development project team creating anything but the simplest, short-lived solutions knows the value of source code management (SCM).
Without SCM, teams could not reliably recreate the source files that were used to build a specific release, making it impossible to reliably maintain what
the team has delivered.

However, a large development project involves much more shared information that just source files. Complex products and systems are mix of software,
electronics, and hardware, with software taking an increasing role. Solution components are often developed by different organizations, using different
method and tools, with lifecycle information stored in different repositories. The design and development of these complex systems requires many kinds
of artifacts. Engineers in specialist disciplines produce these artifacts employing various engineering methods, disciplines and tools. Often these
artifacts are not under Configuration Management, or if they are, it is done manually with half-measures that incur trade-offs. These challenges exist for
software-only systems, yet their magnitude is much greater for products with physical, electrical and software aspects.

For example, specific requirements are often associated with a particular release of components of a system. Analysis and design artifacts are created
to understand how to address the impact of, or realize those requirements. Test cases and test results are used to validate that the work done on the
systems actually meets the requirements.

All this shared information is generally not available under the control of a single organization, set of tools or content management system, and it is often
stored in repositories, not files in the file system. Like source files, all this shared information should be managed in a controllable, predictable way that is
coordinated with specific solution releases.

Development teams need an efficient, effective means of managing versions and variants of artifacts across the whole systems development lifecycle.
They need to be able to capture, preserve, compare, merge and potentially recreate specific sets of versioned information covering the whole lifecycle in
order to know who did what, when, and why.

2.2 Solution

The OSLC Configuration Management specification defines an RDF vocabulary and a set of REST APIs for managing versions and configurations of
linked data resources from multiple domains. Using client and server applications that implement the configuration management vocabulary and REST
APIs allow a team administrator to create configurations of versioned resources contributed from tools and data sources across the lifecycle. These
contributions can be assembled into aggregate (global) configurations that are used to resolve references to artifacts in a particular and reproducible
context.

Team members set the configuration context in each of the tools they use to refer to the particular global configuration that represents the state of the
systems they are working on. They can create branches to support parallel development, and compare and merge branches to flow changes as needed.
Product managers can create branches that represent different variants of a product in order to separate variation points and ensure changes are only
applied to the appropriate variants.

Development teams can create baselines that preserve the state of the federated, shared information in order to be able to recreate that state for any
reason, including for regulatory compliance or for applying maintenance updates to released versions and/or variants of a product.

2.3 Business Value

The primary purpose for versioning and configuration management is to be able to establish and restore or recover a particular set of related resources
in order to know and manage who changed what, when, and why. Applying these techniques to other disciplines, and combining them together, offers
new opportunities for parallel development, managing change, reuse, and management of product variants in complex development projects.

The benefits of source-code management are well known. However, achieving those benefits across all of the information that goes into designing,
building, managing and governing the source code can be a challenge. This is because having multiple change and configuration management solutions
for different artifact types requires manual coordination of versions and variants across the tools. The OSLC Configuration Management specification
specifies a standard way in which different tools, developed by different suppliers, at different times, using different repositories and data representations
can contribute version and configuration information across the whole lifecycle.

The resulting business value includes:

Cross-tool version and configuration management related shared information
Support for context-specific link navigation and management
Automatic configuration management of complex solutions and systems
Enable parallel, independent, development streams with branching and merging of all lifecycle information
Save and restore consistent sets of related information for any purpose including regulatory compliance and product maintenance releases
Manage different variants of a related set of deliverables, solutions and/or products
Reuse utilizing commonality/variability for Product Line Engineering (PLE)

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 5 of 20

Some typical uses of versioning and configuration management capabilities include:

Creating baselines of development streams in order to capture and preserve the state of a system at different points in time
Use release stabilization streams to complete development of specific releases while allowing ongoing future development to continue in parallel
Branching streams for different purposes including experimentation, A/B testing, gradual production rollout, importing from a supplier, etc., and
delivering changes on streams to a common shared stream in a controlled manner.
Parallel development on shared artifacts, overlapping releases or the common parts of product variants with the ability to compare different
streams and flow changes as needed to meet requirements, enforce enterprise asset management and governance, and promote reuse.
Create maintenance branches and control propagation of maintenance changes into ongoing development streams in a controlled, predictable
manner
Managing configurations of related, federated, shared information across the whole lifecycle.
Isolate changes for different variants on different streams while also managing common, reusable components.
Enable reuse of lifecycle artifacts including requirements and test cases, as well as the relationships between them, including regulatory and
security requirements and test cases.
Enable analysts and designers to work one iteration ahead in agile projects in order to better inform iteration planning and development.
Enable progressive contribution of parts of a large system with baselines that capture each significant evolution of the system.
Support different approaches to reuse by branching from product streams that are closes to the new variant, or branching from a common base that
is maintained as a reusable enterprise asset.
Enable concurrent development of shared enterprise assets in different product delivery streams (requirements delivery life-cycles) while at the
same time managing and governing changes to long-lived enterprise assets (asset management life-cycles).

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 6 of 20

3. Concepts
Configuration Management on Wikipedia defines Configuration Management as follows:

Configuration management (CM) is a systems engineering process for establishing and maintaining consistency of a product’s performance,
functional, and physical attributes with its requirements, design, and operational information throughout its life.

In Configuration Management, artifacts are versioned. For example, a new requirement R1 might be defined and created. Once the content of that
requirement is checked in or committed, version 1 of that requirement R1 exists. At that point, the contents of version 1 cannot be changed. If changes
are required, the content is changed, and when checked in or delivered, results in version 2 of requirement R1. Version 2 of R1 was created from, or
derived from, version 1 of R1. The sequence of versions of that requirement comprise its version history. In OSLC Configuration Management, the term
concept resource is used to mean all the versions of some artifact. In our example, requirement R1 is a concept resource (no version is specified), and
requirement R1 version 1 is a specific version of that concept resource. Many versioning systems exist, and there are a number of different approaches
as to how artifacts are versioned, when those versions are created, and when a version becomes non-modifiable. However, all versioning systems
support some notion of when a change is committed, the version that records that change becomes non-modifiable. The OSLC Configuration
Management specification does not define how versioning should be implemented. For example, some versioning systems assign version identifiers
separately for each versioned resource, while other versioning system version an entire repository so that a version identifier is “global” across all
versioned resources. Servers are free to choose existing versioning systems, or implement a versioning system of their own design.

An important element of Configuration Management is a configuration. A configuration defines what set of version resources are used in that
configuration. For example, configuration C1 might use version 1 of requirement R1, and configuration C2 might use version 2 of requirement R1. New
artifacts might be added to or obsolete artifacts removed from a configuration. The configuration therefore provides a view of the appropriate artifacts
and versions of those artifacts that apply in that configuration. The OSLC Configuration Management specification defines this in terms of selections. A
configuration might reference a selections resource that in turn references the specific version resources that belong in that configuration.

In OSLC Configuration Management, a stream is a modifiable configuration in which artifacts may be added or removed, or a different version of an
artifact may be selected by a user to replace some other version of that artifact. Streams are the configurations in which ongoing work is performed. An
essential element of Configuration Management is the ability to create a non-modifiable record of the set of version resources at specific milestones or
points in time in order to provide traceability and auditing. In OSLC Configuration Management, a baseline is a non-modifiable configuration whose set
of version resources are also non-modifiable. Usually a baseline is created from a stream, recording the state of that stream. The stream continues to be
modifiable, but the baseline is now a non-modifiable record of the state of the stream at the time the baseline was created. Every configuration is
associated with a component. A component is a unit of organization consisting of a set of version resources. When a baseline is created from a stream,
both the baseline and the stream are for the same component. The granularity of a component is up to an application designer.

OSLC Configuration Management supports the idea that a configuration may be a container of other configurations. The term contribution describes a
resource that has both a contribution order property and a reference to a configuration that is used by a parent configuration. Strictly speaking, the term
contribution means a contribution resource, but is sometimes used informally as a shorthand for child configuration which is a contributed configuration.
Configurations may thus form a hierarchy of configurations. The term global configuration is used to describe a configuration that aggregates
configurations, especially those from other configuration management servers. For example, a global configuration might have contributions from a
requirements management server, a quality management server, and a source code control server. The global configuration thus represents the state of
version resources across those application servers.

There is a UML class diagram in section 7 that describes how these concepts, and those in following sections, relate to the resources described in the
OSLC Configuration Management Specification.

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 7 of 20

https://en.wikipedia.org/wiki/Configuration_management

4. Representation of version resources
We will use an example of two requirements, A and B, in order to explain some of the concepts and representations. From a concept resource point of
view, one might think of the requirements as having some basic properties as shown below. Requirement B refines requirement A.

Requirement_a
 id: a
 name: "Requirement A"
 description: "A description of requirement A"

 Requirement_b
 id: b
 name: "Requirement B"
 description: "A description of requirement B"
 refines: Requirement_a

Let’s look at a possible RDF representation of requirement A version 1 (requirementA-v1). The RDF graph of requirementA-v1 might look something
like:

:requirementA-v1
 a oslc_config:VersionResource ;
 dcterms:isVersionOf :requirementA .
 :requirementA
 a oslc_rm:Requirement ;
 oslc_config:versionId "v1" ;
 oslc_config:component :rmComponent1 ;
 dcterms:identifier "A" ;
 dcterms:title "Requirement A"^^rdf:XMLLiteral ;
 dcterms:description "A description of requirement A version 1"^^rdf:XMLLiteral .

There are two important things to note:

1. The main properties of the requirement are made using a subject URI of the concept resource :requirementA and not the URI of the specific
version :requirementA-v1. This is done so that the same subject is used for properties of all the versions of that concept resource. A query against
the concept URI :requirementA and dcterms:description would give the descriptions of requirement A across all versions.

2. There are a few statements made using the subject URI of the version resource :requirementA-v1 that specify the artifact is a version resource and
its concept resource.

Now consider that requirement A has been updated with a new description, resulting in version 2 (requirementA-v2):

:requirementA-v2
 a oslc_config:VersionResource ;
 dcterms:isVersionOf :requirementA ;
 prov:wasRevisionOf :requirementA-v1 .
 :requirementA
 a oslc_rm:Requirement ;
 oslc_config:versionId "v2" ;
 oslc_config:component :rmComponent1 ;
 dcterms:identifier "A" ;
 dcterms:title "Requirement A"^^rdf:XMLLiteral ;
 dcterms:description "A description of requirement A version 2 (changed description)"^^rdf:XMLLiteral .

The statements using subject URI :requirementA-v2 include prov:wasRevisionOf :requirement-v1, indicating that version 2 was derived from or
created from version 1 of requirement A. The dcterms:description of the concept resource specifies the changed description for version 2.

Similarly, one might have requirement B version 1 (requirementB-v1):

:requirementB-v1
 a oslc_config:VersionResource .
 dcterms:isVersionOf :requirementB .
 :requirementB
 a oslc_rm:Requirement ;
 oslc_config:versionId "v1" ;
 oslc_config:component :rmComponent1 ;
 dcterms:identifier "B" ;
 dcterms:title "Requirement B"^^rdf:XMLLiteral ;
 dcterms:description "A description of requirement B version 1"^^rdf:XMLLiteral ;
 oslc_rm:refines :requirementA.

Note that the oslc_rm:refines link is to the concept resource of requirement A :requirementA and not to a version of that requirement. While an
implementation could link to a specific version resource, that’s usually undesirable. Consider what would happen if requirementB-v1 referenced
requirementA-v1. When version 2 of requirement A is created, one might want requirement B to reference it. This would require that a new version 2 of
requirement B be created in order to update that link. This results in a lot of new versions because the links themselves are referencing specific versions.

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 8 of 20

If the link references the concept resource, the resolution of which version of requirement A is referenced, is decoupled and deferred. A user that views
requirements A and B in a particular configuration context will see the versions of both requirements resolved in that configuration context. If requirement
A was updated to version 2 in that context, then requirementB-v1 will have a refines link that now resolves to requirementA-v2. This avoids the need to
update requirement B to reference that new version of requirement A.

Typically applications provide some means for a user to select their configuration context in their user interface. For work in progress, this is usually a
stream. If the user wants to see the versions of artifacts that were used at an important milestone, they would typically select the baseline that was created
for that milestone. From a REST API standpoint, a configuration context can be specified using either a Configuration-Context header or a
oslc_config.context parameter in the request.

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 9 of 20

5. Local configurations
A configuration created in and used by an application to manage the selected versions in that configuration is called a local configuration. Using the
previous example based on requirements, let’s imagine we have a stream in a requirements management application that selects requirements
requirementA-v1 and requirementB-v1. The RDF representation of that stream might be as follows:

:rmStream1
 a oslc_config:Stream ;
 dcterms:title "First requirements management stream"^^rdf:XMLLiteral ;
 oslc_config:component :rmComponent1 ;
 oslc_config:selections :rmStream1Selections ;
 oslc_config:acceptedBy oslc_config:Configuration .

A configuration always has a component. The stream references zero, one, or more selections resource(s) that specify what version resources are
selected by the stream. In our example, the selections resource might be as follows:

:rmStream1Selections
 oslc_config:selects :requirementA-v1, :requirementB-v1 .

A user might want to capture the state of that stream by creating a baseline. The RDF representation of such a baseline might be as follows:

:rmBaseline1
 a oslc_config:Baseline;
 dcterms:title "First requirements management stream (first baseline)"^^rdf:XMLLiteral ;
 oslc_config:component :rmComponent1 ;
 oslc_config:selections :rmBaseline1Selections ;
 oslc_config:baselineOfStream :rmStream1 ;
 oslc_config:acceptedBy oslc_config:Configuration .

The oslc_config:baselineOfStream property specifies the stream that the baseline was created from. The selections resource referenced by that
baseline might be as follows:

:rmBaseline1Selections
 oslc_config:selects :requirementA-v1, :requirementB-v1 .

Creating that baseline from the stream results in that stream’s representation including an [updated] oslc_config:previousBaseline property:

:rmStream1
 a oslc_config:Stream ;
 dcterms:title "First requirements management stream"^^rdf:XMLLiteral ;
 oslc_config:component :rmComponent1 ;
 oslc_config:selections :rmStream1Selections ;
 oslc_config:acceptedBy oslc_config:Configuration ;
 oslc_config:previousBaseline :rmBaseline1 .

When requirement A was changed to create version 2, the stream rmStream1 would be updated to select that version:

:rmStream1Selections
 oslc_config:selects :requirementA-v2, :requirementB-v1 .

The baseline rmBaseline1 continues to select :requirementA-v1 and :requirementB-v1. The selections of a baseline cannot be modified. The baseline
therefore serves as a non-modifiable record of the state of the stream from which it was created at a specific point in time.

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 10 of 20

6. Global configurations
A global configuration is a configuration used to assemble other configurations (typically from other application servers) into a hierarchy. To understand
the usage, let’s consider that we have a quality management application that has a test case testCaseA that validates requirementA. Version 1 of that
test case might have an RDF representation as follows:

:testCaseA-v1
 a oslc_config:VersionResource ;
 dcterms:isVersionOf :testCaseA ;
 :testCaseA
 a oslc_qm:TestCase ;
 dcterms:title "Test case validating requirement A"^^rdf:XMLLiteral ;
 dcterms:description "Details of how the test case validates requirement A"^^rdf:XMLLiteral ;
 oslc_qm:validatesRequirement :requirementA .

In this example, the quality management application has its own local stream that selects testcaseA-v1:

:qmStream1
 a oslc_config:Stream ;
 dcterms:title "First quality management stream"^^rdf:XMLLiteral ;
 oslc_config:component :qmComponent1 ;
 oslc_config:selections :qmStream1Selections ;
 oslc_config:acceptedBy oslc_config:Configuration .

with its referenced selections resource:

:qmStream1Selections
 oslc_config:selects :testCaseA-v1 .

A user looking at test cases in the context of configuration qmStream1 would see testCaseA-v1. That test case has a validates requirement link to
requirement A. However, in that configuration context, it is not possible to resolve the link to a version of the requirement concept resource because that
is managed by the requirement management application and not the quality management application.

This is where a global configuration is useful. As an example, say we have a global stream that has contributions from rmStream1 and qmStream1. Its
RDF representation might be as follows:

:globalStream1
 a oslc_config:Stream ;
 dcterms:title "First global stream"^^rdf:XMLLiteral ;
 oslc_config:accepts oslc_config:Configuration ;
 oslc_config:acceptedBy oslc_config:Configuration ;
 oslc_config:contribution :contribution1, :contribution2 .
 :contribution1:
 oslc_config:configuration :rmStream1 ;
 oslc_config:contributionOrder "1" .
 :contribution2:
 oslc_config:configuration :qmStream1 ;
 oslc_config:contributionOrder "2" .

A user is working in the configuration context globalStream1. In the requirements management application, when the user looks at the requirements for
component rmComponent1, they see requirementA-v2 and requirementB-v1. The requirements management application resolves the component
rmComponent1 in the context of global configuration globalStream1. The global configuration has only one contribution associated with rmComponent1 and
that’s for the local configuration rmStream1. That local configuration selects requirementA-v2 and requirementB-v1. Similarly, in the quality management
application, when the user looks at the test cases for component qmComponent1, they see testCaseA-v1.

For that test case, the quality management user sees the validates requirement link to requirementA-v2. The quality management application only
knows the link is to the test case concept resource requirementA and cannot resolve which version of that requirement is referenced. This is because the
requirements management application that owns that requirement manages the configurations that select it. So how does the quality management
application resolve the link to the requirement to a specific version?

When referencing that requirement, it uses a oslc_config.context query parameter or a Configuration-Context header with a value that is the URI of
the configuration context. For example ":requirementA?oslc_config.context=':globalStream1'". The parameter value is shown here without URL
encoding for clarity. In practice, parameter values should be URL encoded. When the requirements management application gets a request to fetch that
requirement, it resolves the concept resource URI in the specified configuration context. In this example, it knows that the requirement concept resource
requirementA is owned by component rmComponent1, and resolves that component in the global configuration context globalStream1 to the local
configuration rmStream1, and then resolves the requirement concept resource requirementA to :requirementA-v2.

How does an application resolve a component in a global configuration context to a local configuration?

Say an RM application wants to resolve component rmComponent1 in the context of globalStream1. The starting point is to consider the hierarchy of the
global configuration :globalStream1 and associated components. The previous example yields the tree shown below:

 globalStream1 (component=globalComponent1)

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 11 of 20

 rmStream1 (component=rmComponent1, order=1)
 qmStream1 (component=qmComponent1, order=2)

An application traverses this tree looking for component rmComponent1 and finds rmStream1. When the tree only contains a single configuration for a
particular component, the order of traversal does not matter.

In practice, constructing a contribution tree by fetching data each time a component needs to be resolved to a local configuration does not scale well or
provide the performance required for frequent resolution. Implementations commonly use some form of caching of that data and use an implementation
dependent way of maintaining that cached data.

Global configurations therefore fulfill two important functions:

They allow a configuration context to be used across applications that allow an application to resolve their concept resources to the right versions.
They allow links between concept resources in different applications to be viewed and navigated to the right versions of those artifacts in that
configuration context.

The distinction between a local configuration and a global configuration is a fuzzy one. Consider a requirements management server that supports
configurations that have contributions from other configurations in the same server but not other servers. Should such a configuration be called a local
configuration or a global configuration? The distinguishing characteristics of a global configuration are that they are normally usable as contributions in
any other global configuration and may use contributions from any local or global configuration. So such a configuration would be more accurately termed
a local configuration even though it has contributions.

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 12 of 20

7. UML Class diagram
The UML class diagram below shows the main elements of the configuration management specification. It intentionally omits some relationships for the
sake of clarity. The resource shapes in the specification remain the definitive reference.

Some key aspects of the representation are:

The version resources selected by a configuration are determined using the property path oslc_config:selections/oslc_config:selects.
The immediate contributed configurations to a configuration are determined using the property path
oslc_config:contribution/oslc_config:configuration. Contribution resources are embedded within configurations.
Global configurations often only have contributions and not selections.
Local configurations often only have selections and not contributions.

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 13 of 20

8. Component skew and contribution order
Consider a global stream globalStream2 that has contributions from rmStream1, rmBaseline1, and :qmStream1 in that order. rmStream1 and rmBaseline1
are for the same component. Where a configuration hierarchy has contributions from two different configurations of the same component, this is called
component skew.

Now consider the contribution tree for globalStream2:

 globalStream2 (component=globalComponent1)
 rmStream1 (component=rmComponent1, order=1)
 rmBaseline1 (component=rmComponent1, order=2)
 qmStream1 (component=qmComponent1, order=3)

When resolving the concept requirementA in the context of globalStream2, should this resolve to requirementA-v2 selected by rmStream1 or
requirementA-v1 selected by rmBaseline1? The component skew is resolved by the order in which the contribution tree is traversed. If the traversal
algorithm orders rmStream1 before rmBaseline1, then component rmComponent1 resolves to rmStream1, and the requirementA resolves to requirementA-
v2.

The configuration management specification does not prescribe a traversal algorithm, but a common approach is to perform a depth-first, sibling ordered
by contribution order second traversal. Consider the following configuration hierarchy:

 globalStream2 (component=globalComponent1)
 globalStream3 (component=globalComponent2, order=1)
 rmStream1 (component=rmComponent1, order=1)
 globalStream4 (component=globalComponent3, order=2)
 rmBaseline1 (component=rmComponent1, order=1)
 qmStream1 (component=qmComponent1, order=2)

A depth-first, sibling ordered by contribution order second traversal results in the following traversal order:

 globalStream2
 globalStream3
 rmStream1
 globalStream4
 rmBaseline1
 qmStream1

Note that the contribution order should be sorted as an ASCII string rather than being treated as a numeric string.

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 14 of 20

9. Branching
The OSLC Configuration Management specification does not define whether a versioning system should support branching and/or parallel versions, and
if so how these are managed. Some versioning systems support branches as first-class objects, and there are actions to create branches. Some
versioning system handling branching by copying data into different paths in the repository, referencing the shared artifacts. Other versioning systems
regard branching as simply parallel versions, perhaps for different variants or purposes. Because of these different approaches, branching is not covered
by the specification so that it remains implementable across a wider range of systems.

From an OSLC standpoint, clients create new versions of concept resources by a PUT on the concept URI with a configuration context specifying the
stream that will be updated to use the new version. The version that was previously used in that stream is the predecessor version of the newly created
version. For example, if :rmStream1 uses requirementA-v1, a new version requirementA-v2 might be created from it by a PUT requirementA?
oslc_config.context=%3ArmStream1. If a client then requests a new version be created from requirementA-v1 in some other stream, an implementation
that supports branching might create requirementA-v2.1 as a parallel version to requirementA-v2. An implementation that only supports linear
versioning might fail the request.

Typically, parallel development for different branches or purposes is performed in separate streams. For example, parallel streams might be created
from the same baseline in order to work on separate features for some release. The OSLC Configuration Management specification does not define any
mechanisms for merging streams. However, a client can PUT merged content to the concept resource where the merged content has multiple
prov:wasRevisionOf statements indicating the contents were merged from those predecessor versions.

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 15 of 20

10. Implementation elements
10.1 Introduction

When adding support for OSLC Configuration Management to an application, or writing an adapter to provide such support to an existing application,
there are a number of elements to the implementation. To gain the full power of configuration management, an implementation should support both
version resources and configurations. An implementation need not follow the ordering of the following sections. However, the ordering reflects some of
the dependencies that an implementation is likely to face. For example, versioned artifacts belong to a component, so support for components might be
better implemented before versioned artifacts. Within each section, a minimal set of elements is described, followed by optional elements. An
implementation might want to tackle the minimal elements first, then revisit each of the sections and consider tackling some or all of the optional
elements.

Some applications support a notion of a project or project area that serve as a container of resources and for managing access to those resource in that
container. While this notion is not part of any OSLC specification, it is mentioned here because it may affect the implementation. Applications that
support this or similar containers, might want to declare a separate oslc:ServiceProvider for each such container. For example, this is a common
convention for IBM Jazz applications.

10.2 Components

10.2.1 Minimal elements

At a minimum, an implementation should provide REST support for:

GET of a component URI. The RDF of a component should include a oslc_config:configurations statement to a Linked Data Platform Container
(LDPC). The response should include an Etag header whose value represents the state of the component.
PUT of a component. The implementation should require the use of an ‘If-match’ header whose value matches the current Etag.
GET of a component’s configurations LDPC, returning a container that references all the configurations of that container.

While it is valid to create a component that initially does not have any configurations, it is good practice when creating a component to do either of:

Create an empty initial baseline, then create an empty default stream from that baseline.
Create an empty default stream.

10.2.2 Optional elements

Support resource shapes for components. Each component should include in its RDF representation an oslc:instanceShape property that
references a resource shape for that component.
Support an OSLC selection dialog of components. This should be declared in an oslc:Service that is discoverable from a
oslc:ServiceProviderCatalog.
Support for an oslc:CreationFactory for components. This should be declared in an oslc:Service that is discoverable from a
oslc:ServiceProviderCatalog. The creation factory should reference a resource shape for components.
Support POST on a component’s configurations LDPC as a means of creating a new stream for that component.
Support OSLC query on components. An oslc:QueryCapability should be declared in an oslc:Service that is discoverable from a
oslc:ServiceProviderCatalog. The query capability should reference a resource shape for the query container, and that resource shape should
reference a value shape for the components that might be returned in that container.

10.3 Configurations

10.3.1 Minimal elements

At a minimum, an implementation should provide REST support for:

GET on a configuration URI. If the application manages versioned resources, the RDF representation should include a oslc_config:selections
statement to a selections resource. The response should include an Etag header whose value represents the state of that stream.
PUT of a configuration. The implementation should require the use of an ‘If-match’ header whose value matches the current Etag.
GET on a selections resource (if the application manages versioned resources). The RDF representation should include a oslc_config:select
statement to each version resource URI selected by that configuration.

10.3.2 Optional elements

Support resource shapes for configurations. Each configuration should include in its RDF representation an oslc:instanceShape property that
references a resource shape for that configuration.

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 16 of 20

Support oslc_config:streams property in the RDF of a baseline, and support a GET on that LDPC. Optionally support POST on that LDPC as a
means of creating a stream from the baseline.
Support oslc_config:baselines property in the RDF of a stream, and support a GET on that LDPC. Optionally support POST on that LDPC as a
means of creating a baseline from the stream.
Support an OSLC selection dialog of configurations. This should be declared in an oslc:Service that is discoverable from a
oslc:ServiceProviderCatalog and its referenced oslc:serviceProvider members.
Support for an oslc:CreationFactory for configurations. This should be declared in an oslc:Service that is discoverable from a
oslc:ServiceProviderCatalog and its referenced oslc:serviceProvider members. The creation factory should reference a resource shape for
configurations.
Support OSLC query on configurations. An oslc:QueryCapability should be declared in an oslc:Service that is discoverable from a
oslc:ServiceProviderCatalog and its referenced oslc:serviceProvider members. The query capability should reference a resource shape for
the query container, and that resource shape should reference a value shape for the configurations that might be returned in that container.
Support DELETE of a local configuration.

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 17 of 20

11. Concept resources and version resources
11.1 Minimal elements

At a minimum, an implementation should provide REST support for:

GET on a version resource URI. The RDF representation of the version resource should:
Include statements against the version URI declaring it of type oslc_config:versionResource, and dcterms:isVersionOf referencing the
concept resource URI.
Include statements about the properties of the resource using the concept resource URI as the subject.

GET on a concept resource with a local configuration context specified by a oslc_config.context query parameter or header. This should resolve
the concept resource to the version resource and return the RDF of that version resource. This requires that the application be able to determine
the component to which a specified concept resource belongs.

11.2 Optional elements

Support GET on a concept resource with a global configuration context specified by a oslc_config.context query parameter or header. This should
resolve the concept resource in the context of that global configuration to the version resource and return the RDF of that version resource. This is
required if the application is to be used with global configurations. The only mechanism for resolving a local component to a local configuration in a
global configuration context covered by the specification is for an application to GET the global configuration to discover its contributions, and then
repeat this recursively on the contributions to discover the contribution hierarchy. Doing this each time resolution is required is likely to be
expensive. Implementations should consider whether some form of local caching of contribution trees is required to meet performance goals of the
application.
Support GET on a concept resource without a configuration context specified by a oslc_config.context query parameter or header. The
application should determine a default configuration, and then use that as the configuration to resolve the concept resource. should resolve the
concept resource in the context of that global configuration to the version resource and return the RDF of that version resource. This is required if
the application is to be used with global configurations.
Support POST to a component with a oslc_config.context query parameter or Configuration-Context header to create a new concept resource.
Support PUT to a concept resource with a oslc_config.context query parameter or Configuration-Context header specifying a stream in which
to create a new version from a currently used version.
Support DELETE of a version resource with a oslc_config.context query parameter or header to delete the current mutable version resource from
a specified stream.
Support an oslc:CreationFactory that can create new concept resources and their initial version in the context of a configuration.

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 18 of 20

12. References
https://oslc-op.github.io/oslc-specs/specs/config/oslc-config-mgt.html

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 19 of 20

https://oslc-op.github.io/oslc-specs/specs/config/oslc-config-mgt.html

Appendix A. Acknowledgements
The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Project Governing Board:

James Amsden, IBM (co-chair)
Andrii Berezovskyi, KTH (co-chair)
Axel Reichwein, Koneksys

Techical Steering Committee:

James Amsden, IBM
Andrii Berezovskyi, KTH
Axel Reichwein, Koneksys

Additional Participants:

Nick Crossley
David Honey

Non-Standards Track Work Product

config-primer Copyright © OASIS Open 2021. All Rights Reserved. 16 December 2021 - Page 20 of 20

